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Numerical studies of the laminar boundary layer 
for Mach numbers up to 15 

By HENRY A. FITZHUGHT 
Department of Aeronautics, Imperial College, London University 

(Received 25 June 1968) 

A comprehensive set of exact solutions to the first-order boundary-layer equa- 
tions has been computed using the finite difference computer programme of 
Sells, with and without wall cooling. The effects of Prandtl number, wall cooling 
and Mach number on separation point location were studied. Values of displace- 
ment thickness, skin friction coefficient and Stanton number are displayed 
graphically for the supersonic flow over a circular concave are, for a subsonic 
cooled cylinder and for the case of a linearly retarded velocity distribution. The 
influence of pressure gradient on recovery factor was studied. Velocity and 
temperature profiles are shown for four cold wall cases. The exact computer 
results show the errors in many of the more approximate methods available for 
the case where U, = Urn( 1 - X / L ) .  The importance of second-order effects and 
the applicability of a first-order solution are discussed briefly. 

1. Introduction 
These numerical experiments were intended to be comprehensive and as many 

effects were studied as possible. Much more information is given than in previous 
exact solutions, including boundary-layer profiles and displacement thicknesses. 

The computer solutions serve two purposes. They provide a standard against 
which the various approximate theories can be measured, and they indicate 
trends. Until now, very few exact solutions have been published for the com- 
pressible boundary-layer equations with wall cooling. 

Sells’ ( 1966) computer programme solves the first-order boundary-layer 
momentum, energy and continuity equations assuming only a perfect diatomic 
gas of constant Prandtl number flowing over a wall of constant temperature. 
The inviscid solution over the body in question is specified before calculation 
begins. Sells’ method of solution of two couplod non-linear partial differential 
equations employs an implicit finite difference scheme and an estimation of the 
non-linear terms. The resulting non-homogeneous linear equations are solved 
by matrix inversion, the non-linear terms are re-evaluated and the process is 
repeated until the solution converges to within some pre-set limit. The programme 
then marches downstream utilizing the parabolic nature of the equations. Sells 
finds that results for skin friction are accurate to four significant figures, three 

t Present address : Research Division, McDonnell Douglas Corporation, St Louis, 
Missouri, U.S.A. 
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near separation. The programme is capable of integrating close to separation 
and usually fails to converge a t  some point less than one step length from the 
extrapolated separation point. Occasionally the programme integrates one step 
length beyond separation, but errors in calculation using a reversed flow velocity 
profile are thought to  be so great that convergence cannot be obtained any 
further downstream. 

Stewartson (1964) states that the singular point in the boundary-layer should 
lie upstream of the separation point for a cold wall. The present calculations can 
tell us nothing about the singular point location because the step lengths used 
in the calculation are too large. It would appear that the programme passed the 
singular point on the occasions when it converged beyond separation. 

The programme as published did not converge a t  Mach numbers above four 
and a great deal of time was spent trying to force convergence by numerical 
techniques less accurate than those originally employed. However, it was later 
realizedthat in the scaledvariables usedin the machine code, the scaled boundary- 
layer thickness decreases with increasing Mach number, which is the oppposite 
trend to the physical growth. It is necessary to specify T ~ ,  the value of 7 where 
the boundary layer is assumed to asymptote to the free stream, as an input to 

the programme where 7 is the Dorodnitsyn normal co-ordinate p/p,dY 

and ( X ,  Y )  are Cartesian co-ordinates. The programme then divides the boundary 
layer into a pre-specified number of steps (200 usually). For Mach numbers up 
to four, vi = 6, but this had to be reduced progressively to 1 a t  M = 10 and 0-025 
a t  M = 22. When the input parameters were adjusted accordingly, it  was found 
that the original programme worked perfectly well a t  any Mach number up to 
the limit tested, i.e. M = 22. 

2. Flow fields studied 
By far the most common, relevant problem reported in the literature is the 

growth of a laminar boundary layer in a linearly retarded velocity field, i.e. 
V, = Urn( 1 - X / L )  where U is the velocity in the streamwise direction, L is the 
length of the body and the subscripts e and 00 denote the edge of the boundary 
layer and free-stream conditions, respectively. Morduchow ( 1965) has given 
an excellent summary of the results of such calculations available before 1965; 
a few more have appeared since then. The method of Sells has now been used to 
solve the same problem in order to compare the results with those reported 
previously. 

The body shapes that generate a linearly retarded velocity field are shown in 
figure 1, assuming Prandtl-Meyer compression. 

In  the solution of the linearly retarded velocity distribution the body contour 
varies with Mach number. Therefore in order to see trends more clearly the 
boundary-layer growth over a circular arc of unit-semi-circumference was 
calculated. The external (adverse) pressure gradient was determined assuming 
isentropic Prandtl-Meyer compression. 

The cases studied are listed in tables 2-4. The properties calculated were 
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(b*/L),lRx, C,,lRx and St.JRx from the leading edge to the separation point 
where 6* is the boundary-layer displacement thickness, R, is the Reynolds 
number based on X and free-stream conditions, C, is the skin friction coefficient, 
based on free-stream conditions and S,is the Stanton numberqlp, U,C,(To, - T,) 
where q is the heat transfer to the wall, p is the density, C, is the specific heat at 
constant pressure, T is the absolute temperature, and the subscripts 0 and 
w indicate stagnation and wall conditions, respectively. Velocity, stagnation 
temperature and static temperature profiles are shown at M = 6 and 10 for 
the linearly retarded velocity distribution, cold wall, and two Prandtl 
numbers. 
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FIGURE 1. Contours which generate a velocity distribution U, = U,(1 - X / L ) ,  

for isentropic compression. 

3. Adiabatic wall conditions 
The recovery factor was assumed to be dP, where P is the Prandtl number, 

and the adiabatic wall temperature is defined by Taw = T, + .JP( Uz/2Cp) .  
The assumption that the recovery factor is 2/P is a first approximation near 

P = 1.0 and is ' correct' for zero pressure gradient as shown in Stewartson (1964, 
p. 41). Its validity was tested for adverse pressure gradients by calculating the 
magnitude of the heat transfer rate in these cases. In  this paper solutions labelled 
adiabatic wall imply T, = TR = Taw as defined above, where TR is the recovery 
temperature, and do not necessarily imply zero heat transfer. Of course, if 
P = 1.0 then TR = To, and the heat transfer is identically zero. 

4. Viscosity law assumptions 
Although the computer programme can use the Sutherland viscosity law, all 

calculations except one were made assuming a linear variation of viscosity with 
temperature. The use of the Sutherland law requires the specification of the 
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stagnation temperature independently and this is too much of a restriction to 
put on an otherwise general set of exact solutions. However, in one case ( M  = 10, 
T, = T,, P = 0.725 and Tow = 1000°K) calculations were made using the 
Sutherland law. 

5. Comparisons with other results 
The comparisons available are best summarized in a table such as that given 

below. For details of each individual result, readers are referred to the publication 
cited. 

M ( X I L ) ,  (X IL) ,  
Present study Other studies 

Morduchow (1965) 

Head & Hayasi 
(1967) 

4 0.062 0.062, 0.060, 0.062 
0.056, 0.067, 0.066 
0.072, 0.064, 0-062 
0.061 
0.054, 0.055 

6 0.043 0.044, 0.042, 0.043 
0.037, 0,048, 0.057 
0.046 

1 Morduchow (1965) 
J 

10 0.026 } Morduchow (1965) 0.024, 0.023, 0.021 
0.023, 0,023 

(a) Comparison of results for P = 1-0, U, = U,(1 - X / L ) ,  adiabatic wall. 

(X/LS) (X/L)S 
M Present study Other studies 

4 0.204 Morduchow (1965) 0.25, 0.173, 0.21, 0.311 
0.177, 0.22, 0.227 } 

(b )  Comparison of results for P = 1.0, U, = U,(l-X/L),  T, = T,. 

P X ' S  Other results 
1.0 0.935 0.920 Terrill (1960)t 

(c )  Comparison of results for a cylinder, U, = U,(2 sin X / r ) ,  
M = 0.5, T, = 0*5T0,, r = 0.5. 

TABLE 1. Comparison of present study with other available results. 
(Subscript S denotes values at separation point) 

It should be noted that our separation points were extrapolated by taking the 
last three points prior to separation and finding the power n so that C, was linear 
in ((X/L),-X/L)". It is expected (Morduchow 1965) that n should equal 0.5, 
provided the separation point and the singular point coincide, but it was found 
that n was always slightly larger. This effect could be partly due to accumulation 
of numerical error. 

The only oxact non-similar solution known to this author prior to this study 
was the NPL solution for M = 4, T, = Tm, P = 1.0 and U, = Urn( 1 - X / L ) .  
Figure 2 shows this solution compared with our own and three approximate 
methods. 

t Tcrrill's rosults for an adiabatic wall. 
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FIGURE 2. Results of present study compared to four other methods. 
M = 4, T, = T,, P = 1.0, U, = U,(1 - X / L ) ,  linear viscosity law. 

6. Results from present study 
Tables 2-4 list the separation point positions for the cases mentioned pre- 

viously. Figure 3 shows the variation of (XIL), for the linearly retarded velocity 
distribution and includes unpublished data of Beadle & Sells (as referenced in 
Cooke & Mangler (1967)) together with the predictions ofGadd( 1957)forP = 1-0. 
The figure shows that increasing the Prandtl number moves the separation point 
forward markedly for the case U, = U,(l - X / L ) .  The percentage shift defined 
by 1 - (Xp0/X,,.,& is greater for the hot wall than the cold and increases with 
Mach number, whereas the percentage shift levels off above M = 5 for the cold 
wall cases. However, in an absolute sense the separation point movement with 
Prandtl number is much greater in the cold wall cases. 

It should be pointed out that it is wrong to conclude that, for an adiabatic wall, 
increasing the Mach number moves the separation point upstream because in 
this example of a linearly retarded velocity distribution the body geometry is 
changing with Mach number. 

Gadd (1957) gives an upper limit on ( X / L ) ,  as M tends to infinity and T, tends 
to zero. This value was calculated using the Cohen & Reshotko (1956) method 
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T, = TR T, = T, 
h v 7 i  > 

M P = 1.0 P = 0.725 P = 1.0 P = 0.725 
2 
4 
6 
8 

10 
11 
12 
13,14 
15 

0.091 
0.062 
0.043 
0.029 
0.026 
NC 
NC 
NC 

0.010 

0.096 
0.073 
0,055 
0.039 
0.036 
NC 
NC 
NC 
NC 

0.141 
0.204 
0.282 
0.324 
0.351 
0-360 
0.365 

No separation 
No separation 

0.143 
0.232 
0.325 
0.372 
0.405 (0-383)t 

NC 
NC 
NC 
NC 

t Sutherland law To, = 1000 OK, P = 0.725. 

TABLE 2. Separation points for 77, = U,( 1 - X / L ) ,  linear viscosity law. 

1 I 1 1 

I I I 
0 5 10 15 20 

M 
FIGURE 3. Separation points for the linearly retarded velocity distribution. - - - - -, Gadd's 
asymptotic limit P = 1.0; - 0, P = 1.0; ---O, P = 0.725, U, = U,(l-X/L), 
linear viscosity law; - - - - - -, curve of Gadd (1957), P = 1-0; D, Beadle & Sells, 
P = 0.72, T, = 0;  A, Sells (1966), P = 1.0, T, = 0; X ,  Sutherland viscosity law, 
To, = 1000 "K, T, = T,, P = 0'725; V, iM = 0.5, T ,  = O.FiTU,, P = 1.0; +, M = 0.5 
T, = O.5Tom, P = 0.725. 
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However, the results of Beadle & Sells mentioned earlier indicate that for T, = 0, 
even at low M ,  (XIL) ,  is greater than the value of 0.34 given by Gadd, and the 
results lie well above Gadd's curve for T, = 0, P = 1.0. 

Calculations with the computer programme at M = 11, 12, 13, 14, 15, with 
T, = T, and P = 1.0 show that there was no separation at all above M = 12 for 
the cold wall and the separation points for M = 11,12 are far above the asympto- 
tic limit given by Gadd. At a Mach number of 15, no amount of coaxing could 

M T, = 0-25Too0 T, = TR 
2 0.096 0.046 
4 Not calculathd Not calculated 
6 0.247 0.072 
8 0.27t Not calculated 

10 0.28t 0.080t 
t These values accurate only to  k 5 %, due to the step length used. 

TABLE 3. Separation points for circular arc, P = 0.725, linear viscosity law. 

u, = U,(l-X/L) U, = 2U, sin ( X l r )  
A A r \ r \ 

M P = 1.0 P = 0.725 P = 1.0 P = 0.70 
0.5 0.175 0.178 0.935 0.910 
1.1 - - 0.855 0.851 

TABLE 4. Separation points for sinusoidal and linearly retarded velocity 
distributions. T, = 0.5 To,, linear viscosity law. 

make the solution separate; C, would decrease to a very small value and then 
rise slowly. The locations of the C, minimum were much further downstream than 
any of the separation points calculated for lower M .  Separation was found for 
an adiabatic wall and further calculations showed that the boundary layer 
separated for Tw = 0.5 To,, but no separation was found for Tw = 0.25 Tom. 
Thus it would seem that at a high enough Mach number, sufficient cooling will 
delay separation indefinitely. 

As stated earlier, the programme can calculate with either the Sutherland law 
or linear viscosity law. The one case run at  Tom = 1000"K, M = 10, P = 0.725 
and T, = T, is shown in figure 3 and table 2. 

Figures 4 and 5 show the non-dimensionalized boundary-layer displacement 
thickness for the linearly retarded velocity distribution. The effect of Prandtl 
number can be seen to increase markedly as Mach number increases, and the 
effect of cooling can be seen by comparing, say, the M = 10 curves at  the same 
X / L .  The boundary layer is thinned dramatically for T, = T, reaching one- 
quarter of its hot-wall thickness. Figure 4 shows that at higher Mach numbers 
the boundary layer is thinned as it proceeds into an adverse pressure gradient. 
The Mach number decreases downstream and the local density increase in the 
boundary layer overrides the entrainment, thus thinning the boundary layer. 

Figures 6 and 7 show the distribution of C, for the linearly retarded velocity 
distribution for both values of P, and for hot and cold walls. The vast difference 

23 Fluid Mech. 36 
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in numerical value of C, JRx and the difference in shape of the distribution near 
the leading edge for the adiabatic wall case are easily discernible. The reader is 
reminded of the great difference in scale between figure 6 and figure 7. 

Figure 8 shows the variation of Stanton number for the linearly retarded 
velocity distribution. The curves show qualitatively the same behaviour as the 

"0 0.10 0.20 0.30 0.40 

X I L  
FIGURE 4. Displacement thickness for the linearly retarded velocity distribution, cold 
wall. U, = U , ( l - X / L ) ,  T' = T,, linear viscosity law. -, P = 1.0; ---, 
P = 0.725. 

corresponding trends in C; (figure 6) but 8, never approaches zero and inspection 
of figures 6 and 8 together show that CJX, starts at 2.0 (for P = 1.0) at X I L  = 0 and 
proceeds smoothly to zero at  separation. 

The linearly retarded velocity distribution is a continuously adverse pressure 
gradient. It was thought worthwhile to compare its trends with those of a pressure 
gradient which is initially favourable but later turns adverse. For the latter case, 
the velocity distribution U, = 2U, sin X / r  was chosen, and r = 0.5. Figure 9 
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shows the variation in C,, 6* and S, for the cylinder at  Mach number 0.5, where 
r is the radius of the circular arc body. 

For the linearly retarded velocity distribution, a higher Prandtl number leads 
to lower Stanton numbers, lower skin friction, higher values of displacement 
thickness and earlier separation. For the sinusoidal velocity distribution it was 

XIL  

wall. U, = U , ( l - X / L ) ,  T, = TR, linear viscosity law. -, p = 1.0. _ _ _  
FIGURE 5. Displacement thickness for the linear retarded velocity distribution, adiabatic 

P = 0.725. 

found that a higher Prandtl number led to lower Stanton numbers, higher values 
of displacement thickness, higher skin friction and later separation. This partial 
reversal of trends must be due to the difference in pressure gradient and to the 
fact that one flow begins from a sharp leading edge while the other is a stagnation 
point flow. Both types of pressure gradient were calculated at subsonic and 
supersonic Mach numbers, and the trends for each flow were the same for both 
subsonic and supersonic free streams, although the supersonic sinusoidal velocity 
distribution is no longer the flow over a cylinder. 

Figures 10 and 11 show at M = 6, 10 respectively, the velocity, stagnation 
temperature and static temperature profiles across the boundary layer for 
Prandtl numbers of 1.0 and 0.725. In  these graphs, separation refers to the last 
profile calculated by the programme; the actual separation point is slightly 

23-2 
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further downstream. The effect of P is marked, especially on the static tempera- 
ture. It should be noted when the velocity gradient at  the wall approaches zero, 
the stagnation and static temperature gradient is still non-zero. Near separation, 
the curves at  each P for equal values of X I L  cease to coincide at all, because one 
flow is much nearer separation than the other. 
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I I 
0.50 
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0 0.10 0.20 0.30 0.40 

XIL  
FIGURE 8. Heat transfer for the linearly retarded velocity distribution. U ,  = Urn( 1 - X / L ) ,  

T,,, = T,, linear viscosity law. -, P = 1.0; - - -, P = 0.725. 

Figure 12 shaws the separation points on the circular arc for cold and adiabatic 
walls. The separation point is very insensitive to Mach number for the adiabatic 
cases, but moves rearward as M increases for the cold wall case. The value of this 
study is that the circular arc is of constant geometry unlike the U, = Urn( 1 - X / L )  
distribution and shows that at  constant Mach number, cooling the wall delays 
separation. Figures 13-15 show the variation in 6*, C, and S, for the circular arc. 
Again dramatic thinning of the boundary layer with cooling can be seen in 
figure 13, where the difference between hot and cold wall displacement thickness 
can be as much as a factor of 3. The marked thinning of the boundary layer as it 
proceeds downstream in the cold wall cases is also evident. The curves for C, and 
S, show again that S, does not approach zero as C, does. 
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Flows at the same Mach number, each near separation (different X / L ,  there- 
fore), were compared and it was seen that at  highMach numbers thc ‘adiabatic’ 
wall sustained much less heat transfer, compared to the case where T, = !Pa, 
than did flows at  low Mach numbers. A t  Mach number 2, the ‘adiabatic’ Stanton 
number was 30 yo of its cold wall counterpart, but at higher Mach numbers, the 
figure was progressively reduced until at M = 10, the heat transfer was 3 yo of 
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2.5 

2.0 
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1.a 

0.5 

( 

FIGURE 9. Displacement thickness, skin friction and heat transfer for a coolod cylinder. 
M = 0.5, T, = O.5Tom, U, = 2 U ,  sin Xlr,  linear viscosity law. -, P = 1-0; -- -, 
P = 0-70, r =  0.5. 

its cold wall counterpart. This trend was also found on the circular arc and we 
conclude that assuming that the recovery factor is equal to P is a better assump- 
tion at high Mach numbers than at  low ones. It should be noted that these con- 
clusions are drawn from considerations of S,JRx, not from S, alone. It is worth 
remarking that Clutter & Smith (1963) have found the same trend on a flat 
plate and a cone, also assuming a linear viscosity law. Their calculations show 
that the recovery factor approaches JP and becomes identical to it at M = 9. 
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0 

0.5 

n 

FIGURE 10. Velocity, stagnation and static temperature profiles for the linearly retarded 
velocity distribution. M = 6, T, = T,, U, = U,(1 -X/L) ,  linear viscositylaw. -, 
P = 1.0; ---, P = 0.725. 
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FIGURE 13. Displacement thickness on the circular arc for adiabatic and cold walls. 
P = 0.725, linear viscosity law. - , T, = 0-25Tom ; - - - , T, = TR. 
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I 1 1 

M = 8  
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0.10 020 030 0.40 

Xlnr 
FIGURE 14. Skin friction on the circular arc for adiabatic and cold walls. P = 0.725, 

, T, = O-25T0 linear viscosity law. ~ ; --- , T, = T,. m 

0 

X / m  

linear viscosity law. 
FIGURE 15. Heat transfer on the circular arc. P = 0.725, T, = O.25Tom, 
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Figures 6, 8, 9, 14 and 15 show that the skin friction maximum does not occur 
at  the same point as the heat transfer maximum, thus discrediting the often-made 
assumption that heat transfer and skin friction behave similarly, although not 
necessarily in accord with Reynolds’s analogy. Far more important, however, is 
the fact that the heat transfer is definitely not zero at  the separation point. 
Inspection of figures 8,9 and 15 shows that S,JR, cannot logically be extrapolated 
to zero at  the same point as CrdRx can. Moreover, on the occasions when the 
computer programme managed to converge beyond separation, the heat transfer 
was definitely positive and only slightly reduced from its separation point value, 
even though C, was negative. 

7. A comparison of Monaghan’s correlation method with present results 
Monaghan (1961) has published the last in a series of correlation techniques 

which drew upon the analysis of Cohen & Reshotko (1956) and others. His method 
depends on the correlation of separation point locations from exact solutions. His 
correlation parameter is defined as 

where 

and g = 3+2Tw/To,. 

Monaghan found for adiabatic wall conditions and P = 1.0 that ms = 0.0681 
when correlated from the similar solutions of Cohen & Reshotko (1956), and 
ms = 0.084 for Thwaites’s correlations of incompressible solutions for the case 
of a linearly retarded velocity distribution. (Readers are referred to 56.2 of 
Monaghan (1961).) Further correlation produced a curve from which m, for 
flows with heat transfer could be determined from the adiabatic wall value of m,. 
Thus, knowing m,, and integrating the above equations to yield m(X), it is 
possible to determine the separation point for any arbitrary adverse pressure 
gradient. 

Knowing the exact separation point for a number of cases where 

u, = U,(l - X / L ) ,  

we can find the values of m, at these points and compare them with the values of 
ms predicted by Monaghan’s method. This comparison is summarized in tables 
5 and 6, which contain in the first three columns the Mach number, separation 
point location and value of ms predicted by the current study. The other two 
columns show the value of m, taken by Monaghan assuming that ms (adiabatic) 
is 0.0681 and 0.084 respectively. 

From table 5(a)  it can be seen that Monaghan’s values of ms for adiabatic 
walls and linear velocity distributions are correct to within 4 %, but table 5 (b )  
shows poorer agreement for cold walls, where errors vary between 0 and 12 yo. 
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mS m, 
correlation of Thwaites’s 

M (XIL), m.9 similar solutions correlation 
0 0.120 0.0846 0.0681 0.084 
2 0.091 0.0811 0.0681 0.084 
4 0.062 0.0826 0.0681 0.084 
6 0.043 0.0821 0.0681 0.084 

(a) P = 1.0, adiabatic wall. 

m.9 172.9 
correlation of Thwaites’s 

M (XIL), “S similar solutions correlation 
0.5t 0.175 0.0723 0.051 0.063 
2 0.141 0.0693 0.055 0.067 
4 0.204 0.0387 0.034 0.042 
6 0.282 0.0248 0.0204 0.025 

(b) P = 1.0, T, = T,, except where t indicates T, = O.5Tom. 

TABLE 5. Values of rn, a t  exact separation points of present study. 
P = 1.0, U, = U,(1 - X / L ) .  Linear viscosity law. 

M 
2 
6 

10 

M 
2 
6 

10 

(XlW.9 
0.046 
0.072 
0.080 

m.9 
correlation of 

mS similar solutions 
0.079 0.0681 
0.076 0.066 
0.087 0.065 

(a) T, = TR. 
112, 

correlation of 
mS similar solutions 

0.055 0.034 
0.043 0.034 
0.036 0.034 

(b) T, = 0*25TOm. 

m.9 
Thwaitcs’s 
correlation 

0.084 
0.082 
0.080 

“ S  
Thwaites’s 
correlation 

0.042 
0.042 
0.042 

TABLE 6. Values of m, at separation points of present study for a circular arc. 
P = 0.725. Linear viscosity law. 

Table 6 (a )  shows reasonable agreement between the exact values of m, for 
flow on a circular arc and the values from the correlation of the linear velocity 
distribution, for an adiabatic wall. Table 6 (b)  shows poor agreement of m, with 
either value of ms predicted by Monaghan’s method. 

From the above results, it would appear that Monaghan’s method is reliable 
only if a suitable correlation exists for the problem to be studied. For an arbitrary 
problem such correlations are seldom available and for that reason the method 
cannot be relied upon. In passing, it should be pointed out that if T,, = 0,  then 
Monaghan’s method predicts m(X)  = 0,  and there is no separation at  all, contrary 
to the results of Beadle & Sells. 
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8. Conclusions 
Increasing Prandtl number leads to earlier separation in an adverse pressure 

gradient given by V, = U , (  1 - X / L ) ,  but this trend is reversed for a favourable 
pressure gradient which turns adverse as specified by U, = Urn( 2 sin X / r ) .  The 
percentage shift is greater for a hot wall than for a cold wall. For both types of 
pressure gradient, a higher Prandtl number leads to lower heat transfer and 
greater displacement thickness. 

A t  constant Mach number, wall cooling delays separation for the adverse 
pressure gradient and at constant wall temperature increasing Mach number 
delays separation, although the latter effect is small for an adiabatic wall. For 
the favourable pressure gradient which later turns adverse, increasing the Mach 
number causes earlier separation at constant (cold wall) temperature. 

Using the linear viscosity-temperature relation instead of the Sutherland 
viscosity law has a small effect on separation point location. 

Strong cooling has an enormous effect on skin friction and displacement thick- 
ness, the former being increased by a factor of 20 and the latter being reduced by 
a factor of 3 (see Q 6). 

The heat transfer for a cold wall is non-zero at  the separation point, where 
C,lS, proceeds smoothly to zero. 

The assumption that the recovery factor is ,/I' is better at high Mach numbers 
than at low ones. 

Changing the Prandtl numbers has a great effect on the static temperature 
profile and on the velocity and stagnation temperature profile near separation. 

If the free stream Mach number is high enough ( M  9 5 ) ,  the boundary layer 
is thinned as it proceeds into a strong adverse pressure gradient. 

Concluding remarks 
As stated previously, all of the results of this paper are first-order solutions to 

the boundary layer equations and the question of the importance of second-order 
effects naturally arises. Lewis (1967) and Adams (1967), for example, have 
shown that in some hypersonic cases, second-order effects can contribute more 
skin friction than the first-order solution. The results given in this paper are 
accurate solutions to the first-order problem, but are only intended to give 
qualitative conclusions concerning the behaviour of the hypersonic laminar 
boundary layer. 
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